LINKED LIST

Introduction to List and Linked Lists

* Listis a term used to refer to a linear collection of data items. A List can be
implemented either by using arrays or linked lists.

* Usually, a large block of memory is occupied by an array which may not be
in use and it is difficult to increase the size of an array.

* Another way of storing a list is to have each element in a list contain a field
called a link or pointer, which contains the address of the next element in

the list.

* The successive elements in the list need not occupy adjacent space in
memory. This type of data structure is called a linked list.

Linked List

* [tis the most commonly used data structure used to store similar type
of data in memory.

* The elements of a linked list are not stored in adjacent memory
locations as in arrays.

« It is a linear collection of data elements, called nodes, where the
linear order is implemented by means of pointers.

Linked List

* In a linear or single-linked list, a node is connected to the next node by
a single link.

* A node in this type of linked list contains two types of fields
* data: which holds a list element
* next: which stores a link (i.e. pointer) to the next node in the list.

node

data next

Linked List

* The structure defined for a single linked list is implemented as follows:

struct Node{
int info;

struct Node * next;

* The structure declared for linear linked list holds two members
* An integer type variable ‘data’ which holds the elements and

* Another type ‘node’, which has next, which stores the address of the next
node in the list.

Figurative Representation

Head Next Next Next
» Dataltems » Dataltems » Dataltems
NULL
node node node
HnkadList Data Data Data

Properties of Linked list

* The nodes in a linked list are not stored contiguously in the memory
* You don’t have to shift any element in the list

* Memory for each node can be allocated dynamically whenever the
need arises.

* The size of a linked list can grow or shrink dynamically

Operations on Linked List

* Creation:
* This operation is used to create a linked list

* Insertion / Deletion
* At/From the beginning of the linked list
* At/From the end of the linked list
» At/From the specified position in a linked list

* Traversing:

* Traversing may be either forward or backward
* Searching:

* Finding an element in a linked list

* Concatenation:
* The process of appending second list to the end of the first list

Types of Linked List

* Singly Linked List
* Doubly linked list
* Circular linked list
* Circular doubly linked list

Singly Linked List

* A singly linked list is a dynamic data structure which may grow or
shrink, and growing and shrinking depends on the operation made.

* |n this type of linked list each node contains two fields one is data field
which is used to store the data items and another is next field that is
used to point the next node in the list.

info next info next info next

-

5 | &—1T— 3 | &—T1— 8

Creating a Linked List

* The head pointer is used to create and access unnamed nodes.

struct Node{
int info;
struct Node* next;

b

typedef struct Node NodeType;

NodeType* head;

head=(NodeType *) malloc (sizeof(NodeType));

* The above statement obtains memory to store a node and assigns its
address to head which is a pointer variable.

Creating a Node

* To create a new node, we use the malloc function to dynamically
allocate memory for the new node.

* After creating the node, we can store the new item in the node using a
pointer to that node.

Nodetype *p;
p=(NodeType *) malloc (sizeof(NodeType));

p->info=50;
p->next = NULL;

* Note that p is not a node; instead it is a pointer to a node.

Creating an empty list

void createEmptyList(NodeType *head)

{
head=NULL;

)

OR SIMPLY

NodeType *head =Null;

Inserting an Element

* While inserting an element or a node in a linked list, we have to do
following things:
* Allocate a node
* Assign a data to info field of the node.
* Adjust a pointer

* We can insert an element in following places
* At the beginning of the linked list
* At the end of the linked list
At the specified position in a linked list

An algorithm to insert a node at the beginning of the singly linked list

Let *head be the pointer to first node in the current list

1. Create a new node using malloc function
NewNode=(NodeType*)malloc(sizeof(NodeType)),

2. Assign data to the info field of new node
NewNode->info=newltem;

3. Set next of new node to head
NewNode->next=head;

4. Set the head pointer to the new node
head=NewNode;

5. End

Inserting a node at the beginning of the singly linked list

Newnode

head

Newnode
head

29

11

—{ 22

— 33

88

66

11

22 g

33

55

66 1

An algorithm to insert a node at the end of the singly linked list

let *head be the pointer to first node in the current list

1. Create a new node using malloc function
NewNode=(NodeType*)malloc(sizeof(NodeType));

2. Assign data to the info field of new node
NewNode->info=newltem;

3. Set next of new node to NULL
NewNode->next=NULL;

4. if (head ==NULL) then
Set head =NewNode.and exit.

Set temp=head;
6. while(temp->next!=NULL)

temp=temp->next; //increment temp
Set temp->next=NewNode;
8. End

o

o

Newnode

head

head

11

—» 55

—» 66

11

o 22

— 3

An algorithm to insert a node after the given node in singly linked list

let *head be the pointer to first node in the current list and *p be the
pointer to the node after which we want to insert a new node.

1. Create a new node using malloc function
NewNode=(NodeType*)malloc(sizeof(NodeType));

2. Assign data to the info field of new node
NewNode->info=newltem;

3. Set next of new node to next of p
NewNode->next=p->next;

4. Set next of p to NewNode
p->next =NewNode

5. End

e

NODE

Data items

Next

NODE

Next

Data items

New NODE
NODE

Head Next
Uil Dataftems (| ~ U ...

NGDE

Head
» Dataltems

—% Data ltems

NULL

NODE

‘> Data ltems

Next

Data ltems

New NODE

xt Next
. Dataltems ___» Dataitems

Noew NODE

NULL

NODE

=

NULL

An algorithm to insert a node at the specified position in a linked list

let *head be the pointer to first node in the current list

1.

2.

> w

Create a new node using malloc function
NewNode=(NodeType*)malloc(sizeof(NodeType)),

Assign data to the info field of new node
NewNode->info=newltem;
Enter position of a node at which you want to insert a new node. Let this position is pos.
Set temp=head;
if (head ==NULL)then
printf(“void insertion”); and exit(1).
for(i=1; i<pos; i++)
temp=temp->next,

Set NewNode->next=temp->next;
set temp->next =NewNode..

End

Deleting Nodes

* A node may be deleted:
* From the beginning of the linked list
* From the end of the linked list
* From the specified position in a linked list

NODE NODE

Head Next Next Next
sy Dataitems s Dataitems s Dataltems
Target NODE
NULL
NODE NODE
Head Next ’ Next Next
| o Dataltems | 71 £ » | Data ltems _» Dataltems
Target NODE
NULL
NODE NODE
Head Next Next Next
. Dataltems Data ltems vy Dataltems
Target NODE
NULL
NODE NODE
Head Next
» Dataltems . » Dataltems
T

NULL

Deleting first node of the linked list

An algorithm to deleting the first node of the singly linked list:
let *head be the pointer to first node in the current list

1. Ifthead==NULL) then
print “Void deletion” and exit
2. Store the address of first node in a temporary variable temp.
temp=head,
3. Set head to next of head.
head=head->next;
4. Free the memory reserved by temp variable.
free(temp);
5. End

Deleting the last node of the linked list:
An algorithm to deleting the last node of the singly linked list:

let *head be the pointer to first node in the current list

1. Ifthead==NULL) then /Aif list is empty
print “Void deletion™ and exit
2. else if{thead->next==NULL) then //if list has only one node
Set temp=head,;
print deleted item as,
printf(*%d"” ,head->info);
head=NULL;
free(temp);
3. else
set temp=head,;
while(temp->next->next!=NULL)
set temp=temp->next;
End of while
Jree(temp->next);
Set temp->next=NULL;
4, End

let ‘head be the pointer to ﬁrst node in the current list and *p be the pomter to the node
after which we want to delete a new node.
1. ifjp==NULL or p->next==NULL) then
print “deletion not possible and exit
2. set g=p->next
3. Set p->next=q->next;
4. free(q)
5. End

An algorithm to delete a node at the specified position in a singly linked list:
let *head be the pointer to first node in the current list

1. Read position of a node which to be deleted, let it be pos.
2. if head=NULL

print “void deletion” and exit
3. Enter position of a node at which you want to delete a new node. Let this position is pos.
4. Set temp=head

declare a pointer of a structure let it be *p
5. if (head ==NULL)then
print “void ideletion” and exit

otherwise;.

6. for(i=1; i<pos-1; i++)
temp=temp->next;

7. print deleted item is temp->next->info
8. Set p=temp->next;
9. Set temp->next =temp->next->next;

10. free(p);
11. End

Searching an item in a linked list

* Let *head be the pointer to first node in the current list
1. If head==Null
Print “Empty List”
2. Else, enter an item to be searched as key
3. Set temp==head

4. While temp!=Null
If (temp->info == key)

Print “search success”
temp=temp->next,

5. If temp==Null

Print “Unsuccessful search”

void scarchlitem()

{

NodeType *temp;

int key;
if(head

{

==NULL)

printf(“empty list™);
exit(1);

printf{(**Enter searched item™);
scanf('%d” ,&key);

temp=head;
while(temp!=NULL)
{
if(temp->info==key)
{
printf{(**Search successful™);
break;
}
temp=temp->next;
}
if(temp==NULL)

printf(**Unsuccessful search™);

Circular Linked List

A circular linked list is a list where the link field of last node points to
the very first node of the list.

* Complicated linked data structure.

* A circular list is very similar to the linear list where in the circular list
pointer of the last node points not Null but the first node.

Head Next Next Next
» Data ltems » Data ltems » Dataltems

t

C representation of circular linked list

* We declare structure for the circular linked list in the same way as
linear linked list.

struct node
{

int info;

struct node *next;
¥
typedef struct node NodeType;
NodeType *start=NULL:
NodeType *last=NULL.:

Algonthms to msert a node ina c:rcular Imked list

1. Crcatc a new node as
newnode=(NodeType*)malloc(sizeof(NodeType));
2. if start==NULL then
set newnode->info=item
set newnode->next=newnode
set start=newnode
set last = newnode
end if
3. else
set newnode->info=item
set newnode->next=start
set start=newnode
set last->next=newnode

end else
4. End

Algorithm to insert a node at the end of a circular linked list

-~ .-

1. Create a new node as
newnode=(NodeType*)malloc(sizeof(NodeType));
2. if start==NULL then
set newnode->info=item
set newnode->next=newnode
set start=newnode
set last newnode
end if
3. else
set newnode->info=item
set last->next=newnode
set last=newnode
set last->next=start
end else
4. End

Algorithms to delete a node from a circular linked list

rith . G...s ; rli
1. if start==NULL then
“empty list” and exit
2. else
set temp=start
set start=start->next
print the deleted element=temp->info
set last->next=start;
free(temp)
end else
3. End

Algorithm to delete a node from the end of a circular linked list:
1. if start==NULL then

“empty list” and exit

2. else if start—last
set temp=start
print deleted element=temp->info
free(temp)
start=last=NULL

3. else
set temp=start
while(temp->next!=last)

set temp=temp->next
end while
set hold=temp->next
set last=temp
set last->next=start
print the deleted element=hold->info
free(hold)
end else
4. End

Doubly Linked List

* A linked list in which all nodes are linked together by multiple number
of links i.e. each node contains three fields (two pointer fields and one
data field) rather than two fields is called doubly linked list.

* |t provides bidirectional traversal.

Prev mfo next

Fig: A node in doubly linked list

head — NULL ufo nexl #pk" o next ﬁplﬁ) NULL

fig: A doubly linked list with three nodes

head —»| 1 |next|——»| 2 |next|——» next |[——»tail
Singly Linked List
head—{ null | 1 |next|——"|prev| 2 nextle— " |prev| 3 [nextf——s tail
Doubly Linked List
HEAD TAIL

—alala—blada—ls

Prev Node

representation 17} st:
struct node

{
int info;
struct node *prev;
struct node *next;

1
typedef struct node NodeType;
NodeType *head=NULL:

insert a node at th innin link

1. Allocate memory for the new node as,
newnode=(NodeType*)malloc(sizeof(NodeType))

2. Assign value to info field of a new node

set newnode->info=item

set newnode->prev=newnode->next=NULL

set newnode->next=head

set head->prev=newnode

set head=newnode

End

S SN

nction to i n inni. in
void InsertAtBeg(int Item)

{
NodeType *newnode;
newnode=(NodeType*)malloc(sizeof(NodeType));
newnode->info=item;
newnode->prev=newnode->next=NULL,;
newnode->next=head;
head->prev=newnode;
head=newnode;

\Ieorithm to i o i grid ot a oty Hsked tiet

1. Allocate memory for the new node as,
newnode=(NodeType*)malloc(sizeof(NodeType))
2. Assign value to info field of a new node
set newnode->info=item
3. set newnode->next=NULL

4. if head==NULL
set newnode->prev=NULL;

set head=newnode;
5. if head!=NULL

set temp=head

while(temp->next!=NULL)
temp=temp->next;

end while

set temp->next=newnode;

set newnode->prev=temp

6. End

(gorith lel le fi beoinni fa doubly linked list:
1. if head==NULL then

print “empty list” and exit

2. else
set hold=head
set head=head->next Algorithm to delete a node from end of a doubly linked list:
set head->prev=NULL; 1. if head==NULL then
free(hold) print “empty list” and exit
3. End 2. else if(head->next==NULL) then
set hold=head
set head=NULL
free(hold)
3. else
set temp=head;

while(temp->next->next !=NULL)
temp=temp->next
end while
set hold=temp->next
set temp->next=NULL
free(hold)
4. End

Circular Doubly Linked List

* Acircular doubly linked list is one which has the successor and predecessor
pointer in circular manner.

* |tis a doubly linked list where the next link of last node points to the first node and
previous link of first node points to last node of the list.

* The main objective of considering circular doubly linked list is to simplify the
insertion and deletion operations performed on doubly linked list.

Zprw 10 |next :prcfv 20 |next ::pev_ 30 | next prev | 40 | next

| 4

g

head node Fig: A circular doubly linked list

C representation of doubly circular linked list:
struct node
{

int info;

struct node *prev;

struct node *next;
IR
typedef struct node NodeType;
NodeType *head=NULL:
orithm to insert a node at the beginning ¢
1. Allocate memory for the new node as,

newnode=(NodeType*)malloc(sizeof(NodeType))

2. Assign value to info field of a new node
set newnode->info=item
set temp = head -> prev
set newnode->prev=temp
set newnode->next=head

set head->prev=newnode
set temp->next=newnode

g BB B L

set head=newnode

TR 1f head->next—NULLthen
print “empty list” and exit
2. else

set temp=head->next;

set head->next=temp->next
set temp->next=head
free(temp)

1f head->ncxt——NULL then
print “empty list” and exit
2. else

set temp=head->prev;
set head->left=temp->left
free(temp)

3. End

